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We have studied numerically the properties of the logistic map with a single sectional discontinuity at
x =x4. We give the main features of these maps over a wide range of x,, including accumulation points,
inverse cascades, bifurcation diagrams, basins of attraction, and a new superimposition rule. We find
that the main characteristics of the logistic map with a discontinuity at the origin [T. T. Chia and B. L.
Tan, Phys. Rev. A 45, 8441 (1992)], such as the occurrence of inverse cascades, and the validity of rule I,
rule II (which are rules for determining whether higher-level cascades exist), and the summation rule, are
still retained in these new discontinuous maps, implying that these properties and rules are universal in
discontinuous maps. However, there are important differences as well, such as the number of inverse
cascades and the types of routes to chaos which may include a period-doubling route, with period dou-
blings occurring at the same values of app for different values of x,, and an “alternating” route. Fur-
ther, we find that in the chaotic regions of these maps, either the modified summation rule holds or there
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exists the following period-doubling sequence: 2—4—8-—>16—32— - -

periodic regions, depending on the values of x,.

PACS number(s): 05.45.+b

I. INTRODUCTION

The discontinuous logistic map with a sectional discon-
tinuity at x =x,=0

1—alx,|* ifx,>0,

17 10.9—alx,|? if x, <0,

(1)

has been extensively studied recently [1-7]. As the pa-
rameter a increases, the orbits of this map are found to be
periodic until a critical value a, is reached when chaos
sets in. In the periodic region, there are many different
ranges of a, with all the stable cycles in each range having
the same period P, which is a function of the range.
These constant periods (referred to as terms) can be
grouped into six different nonoverlapping, first-level in-
verse cascades such that in each cascade, P decreases in
an arithmetic progression as a increases. The terms of
the first-level inverse cascades occupy the largest ranges
and therefore they are the easiest to be found computa-
tionally [1].

In a first-level inverse cascade, it has been found that if
an empirical rule, rule I, is obeyed, then between any two
consecutive terms, there exist many smaller ranges of the
parameter a, over each of which there are stable cycles
with identical periods. (See Appendix.) Further, conjec-
ture I implies that new stable cycles will also exist be-
tween any other two consecutive terms of this first-level
cascade. The periods of all these new cycles are given by
an empirical rule known as the summation rule, which in-
volves a process similar to that which generates the terms
of the Farey sequence [1]. As a consequence, these new
smaller ranges, located between two successive terms of
the first-level inverse cascade, form the second-level in-
verse cascade as well as the second-level direct cascade.
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-, which may also exist in the

Further, the summation rule implies that there will exist
higher-level direct and inverse cascades embedded be-
tween successive terms of a cascade one level lower.

On the other hand, if rule I does not hold between any
two consecutive terms of the first-level inverse cascade,
then rule II holds, which implies that no new cycles will
exist between these terms.

Of the six first-level inverse cascades present, no new
cycles can be found between any two consecutive terms of
the first two cascades as rule II is obeyed, and conse-
quently conjecture II should hold. However, in each of
the remaining four cascades, new cycles exist between
any two consecutive terms as rule I, and consequently
conjecture I, are satisfied. In the chaotic region of the
map, there exist windows of stable orbits over some of
which they satisfy a modified form of the summation
rule.

The above map is the only one found so far in which
there exist both direct and inverse cascades with either
rule IT or rule I and the accompanying summation rule
holding. We might wonder if these are universal proper-
ties of general discontinuous maps. Hence, the purpose
of this paper is to examine other one-dimensional discon-
tinuous maps to ascertain whether these properties still
hold. In particular, we shall study the behavior of the
one-dimensional discontinuous logistic map with a sec-
tional discontinuity at different values of x,, i.e., the fol-
lowing map

1—alx,|? if x,>x, ,

F(x,)= 2)

O.9—a|xn]2 if x, <x;,
where x; varies from —0.3 to 0.8. Though this map
differs from that of Eq. (1) by only the location of the sec-
tional discontinuity, we shall see below that some of its
properties may be quite different.
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TABLE 1. First-level inverse cascades and other sequences in the periodic region at various values of
x4. The symbol PD denotes period doubling. Chaos occurs immediately after the last cycles shown for
all the values of x,; except those labeled by ( *), for which there exist other terms that appear to belong
to higher-level inverse and direct cascades before the onset of chaos.

Xgq Sequences
PD PD
—0.3(%) 1-2—4, - -+ -50-546—>42—>38—34
PD  PD
—0.2(*) 152,48, - - - -60—52—>44>36—28
PD PD PD
—0.1 1—2,6,4—8,14—28,44
PD PD PD
—0.01 1—-2,8,6,4—8,2—4, - - - —»43539—-35->31-27,31,35,39,43
PD PD PD
0.01 1-2, -+ —-14-12—-510—-8—-6,6,4—8,2—4
PD PD PD
0.1 1-2, -+ -12—-»105>8—56—4,4,254—-8,37—->103—-37—-103 >37— - - -
PD PD PD PD PD PD
0.2 1-2, -+ -10—-8—-56—-54—-52>458-516532— - - -
PD PD PD PD PD PD
0.3 1-2, -+ -10-8—-6—-54—-52—-4—-8—->16—32— - - -
PD
0.4(*) 1-2, -+ -520—-18—16—14—12
PD
0.5 1-2, - -+ —-98—-596—94-—92—90
PD
0.6 1-2, -+ -175—-173—-171—-169— 167
PD
0.65 1—-2, - -+ —-57—-555-553—-551-49
PD
0.7 1—-2, - -+ —392—390—388—386—384
PD
0.8(*) 1-2, - -+ -512-510—-8—6—4

II. FIRST-LEVEL INVERSE CASCADES

The map F given by Eq. (2) for different values of x,
ranging from —0.3 to 0.8 has been studied computation-
ally over the complete range of the parameter a. We
have adopted an initial value x,=0.5 in all the computa-
tions except in Sec. VI. In general, the behavior is similar
to that of Eq. (1), such as the existence of inverse
cascade(s) in the periodic region. However, there are ma-
jor differences as well. Our results are summarized in
Tables I and II.

TABLE II. Accumulation points of the first-level inverse cas-
cades given in Table 1.

When the discontinuity x,; of F lies between O and
0.004, we find that there exist six first-level inverse cas-
cades in the periodic region, just as in the case when
x,=0 [1]. Moreover, these six inverse cascades are iden-
tical to those of the map with x;=0. These results are
not unexpected, as the value of x, is very small and
therefore these maps should have properties similar to
those of the map given by Eq. (1).

However, for most other values of x,, there exists only
one first-level inverse cascade, while for some other
values, no such cascade exists. In particular, we have
found that when x;= —0.1, no inverse cascade exists,
while when x; takes on any one of the remaining values
shown in Table I, only one first-level inverse cascade ex-
ists. Hence, the number of inverse cascades in discon-

Xd Accumulation point tinuous maps is not a universal property.
—0.3 1.300 67 Table I gives the period-doubling sequences, the first-
—0.2 1.28897 level inverse cascades (if they exist), and some other cy-
—0.01 1.53055 cles in the periodic region for each of the discontinuous
0.01 0.990 20 maps with the above-mentioned values of x,;. From this
0.1 0.91674 table, we conclude that each inverse cascade, which is an
0.2 0.85787 arithmetic progression, has a common difference equal to
0.3 0.81525 the period immediately below its accumulation point. As
0.4 0.784 65 this same rule is also observed in the case with x, =0 [1],
0.5 0.76394 this rule appears to be universal for general discontinuous
0.6 0.75237 maps.
0.65 0.83539 Table II gives the accumulation points a,.. of the first-
0.7 0.84225 . .
08 0.879 34 level inverse cascades shown in Table I. At all accumula-

tion points, the true periods are actually infinite, though
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in practice, due to the finite word length of computers,
finite periods that are precision-dependent are found in-
stead [2].

III. RULE I, RULE II, SUMMATION RULE,
AND IMPLICATIONS

For all the first-level inverse cascades shown in Table I,
except those corresponding to x; equal to —0.01, 0.6,
and 0.65, we find that, between any two consecutive
terms of these inverse cascades, rule I holds and conse-
quently conjecture I should also hold, implying that new
cycles should exist between any two consecutive terms of
these inverse cascades [1]. We are able to confirm that
between any two consecutive terms of these first-level in-
verse cascades, there exist new cycles belonging to
higher-level inverse and direct cascades. Further, the
periods of these new cycles found are in agreement with
those of the predicted periods obtained from the summa-
tion rule [1]. Thus, for these inverse cascades, rule I,
conjecture I, and the summation rule are all applicable.

For the first-level inverse cascades belonging to the
other three maps, namely those with x,; equal to —0.01,
0.6, and 0.65, we find that rule II and conjecture II hold
instead, implying that no new cycles should exist between
any of their two consecutive terms and that there should
be no higher-level inverse or direct cascades. We are able
to confirm that new cycles do not exist between any two
consecutive terms of these three maps.

Thus we have found that either rule I, which predicts
the existence of new cycles between any two consecutive
terms of the first-level inverse cascade, and the summa-
tion rule, which gives the periods of the new cycles, or
rule II, which predicts the nonexistence of new cycles, are
also applicable for the map F. We suspect that these
three rules are universal for discontinuous maps.

A. Numerical illustrations

Table III illustrates the situation where rule I is
satisfied for the cycle with period P =36 belonging to the
first-level inverse cascade of the map F with x; = —0.2.
Here a =1.2907, n,=31, and we have used n =31 with
the notations of Ref. [1].

An example of a case when rule II is satisfied is shown
in Table IV, which gives some of the iterates of the
P =209 cycle belonging to the inverse cascade of F with
x;=0.6 when a=0.7542. By choosing n,=1 and

TABLE III. Example illustrating rule I when x; = —0.2 with
n,=31,n=31, P=36, and a =1.2907.

Iteration number Value of iterate

31 0.966297 583 586316 459961930070918 61

67 0.966323717462255332874 15841872190
103 0.966 343 464 729 670456 964 959 499 019 90
139 0.966 358423026 775179 831 175 982 904 84
175 0.966 369 774 907 440 662 757 659 743 273 05
211 0.966 378 402 064 967 629 613 129 101 453 57
247 0.966 384 965 541 899 762 699 203 440 191 64
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TABLE 1V. Example illustrating rule II when x;=0.6 with
ng=1,n=100, P=209, and a =0.7542.

Iteration Value of iterate
100 0.604 343 364 502 154 479 308 648 404 144 64
309 0.604 230339 808 563 325371 808 550862 49
518 0.604 329242 582 485 842 752295335069 41
727 0.604 242 687015 679 863 301 714 167 409 07
936 0.604 318428988 31824195795354701395
1145 0.604 252 143 635 144037 798 364091 879 46
1354 0.604 310148461 153292 643754446183 45

n =100, it is readily verified that rule II holds.
As an illustration of the summation rule, consider the
first-level inverse cascade

+—>12—-10->8—-6—4

belonging to F with x;=0.1. Here rule I is applicable to
either one of the consecutive terms 6 and 4, implying the
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FIG. 1. x;=0.1: (a) Bifurcation diagram in the periodic re-
gion of the map. (b) Enlargement of a portion of the first-level
inverse cascade shown in (a), where now the occurrence of
second-level direct and inverse cascades within the first-level in-
verse cascade is more visible.
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existence of new cycles between these two terms. The
summation rule predicts the periods of the new cycles.
One new cycle will have a period given by the sum of 6
and 4. By applying the same process to this new cycle
with period 10 and either one of the old cycles with
period 6 or 4, we can predict the periods of the new cy-
cles lying between them, namely, 16 and 14. Applying
the same process once again would lead to the prediction
of the following new cycles with periods given by

6— " 522516510514 —-18— -+ —4 .

From these cycles, or terms, we can extract a second-
level inverse cascade

B.L. TAN AND T. T. CHIA

- —22-516—10—4,
as well as a second-level direct cascade
6—->10—-14—18— -

with common differences of 6 and 4, respectively. If we
continue to use the summation rule, say between 16 and
10 of the second-level inverse cascade, we expect to ob-
tain the following new terms

16— -+ —>58—42-526—-36—46— --- 10,
from which we can again extract a third-level inverse cas-

cade
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FIG. 2. x;=0.1: (a) Period 6 cycle at a =0.981. (b) Period 4 cycle at a=0.99. (c) Period 10 cycle at a =0.985, due to the summa-

tion rule.



- —>58—42—-526—-10,
as well as a third-level direct cascade
16—526—36—46— - - - |

with common differences of 16 and 10, respectively. The
process can be repeated to yield an infinite number of lev-
els of cascades.

We have been able to confirm the existence of all these
new cycles with the predicted periods given above.

B. Bifurcation diagrams

An example of a bifurcation diagram for a map F is
given in Fig. 1(a). Here x;,=0.1 and only the periodic re-
gion of the map is shown. From this figure, we can see
the birth of the first-level inverse cascade at the end of
the period 2 cycles at a parameter value of 0.916 74, and
beyond a=1.61579, chaos first occurs. Notice that
higher terms of the inverse cascade tend to occupy small-
er intervals, a behavior that is also observed for Eq. (1)
[1].

Figure 1(b) is the enlargement of a region in Fig. 1(a),
showing second-level direct and inverse cascades embed-
ded within terms of the first-level inverse cascade.
Higher terms of the second-level and higher-level cas-
cades are not visible from the graph, as they occupy nar-
rower intervals.

C. Rule for approximating values of cycle elements
in higher-level cascades

While the summation rule allows us to accurately pre-
dict the periods of new cycles between any two consecu-
tive terms of a first-level cascade provided rule I is
obeyed, by itself it cannot predict the values of the new
cycle elements [1]. We find that the values of the new cy-
cle elements belonging to higher-level cascades generated
by the summation rule are very simply related to those of
the cycle elements belonging to the two consecutive
terms. In fact, we can predict the approximate values of
the new cycle elements from those of the cycle elements
belonging to these two consecutive terms by using the fol-
lowing superimposition rule: If x; (i=1,2,3,...,N) are
the values of the cycle elements of an N-cycle belonging

PROPERTIES OF A LOGISTIC MAP WITH A SECTIONAL ...
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to the end of a term of a first-level inverse cascade and x 3
(j=1,2,3,...,N’) are the values of those of an N'-cycle
belonging to the beginning of a consecutive term, such
that N > N’, then each of the N'-cycle elements x; will be
close to one of the N-cycle elements x;. The new cycle
with period N+ N’ will then contain N+ N’-cycle ele-
ments x;’ (k=1,2,3,...,N+N’) such that every one of
these new elements will be close to either an element x; or
to an element x j’ . The values of these elements, x;’, of
this new cycle are then approximately equal to those of
the set obtained by superimposing the sets x; and x;.

This rule can be illustrated by using the example pro-
vided for the summation rule in Sec. III A. In particular,
we shall consider the consecutive terms 6 and 4 belonging
to the first-level inverse cascade. Here N =6 and N'=4.

Figure 2(a) shows the map with x; =0.1 at a parameter
a=0.981, which is near the end of the 6-cycle. In Fig.
2(b), we see a 4-cycle at a =0.99, shortly after it is born.
Notice that the 4-cycle elements almost coincide with
four of the 6-cycle elements. The summation rule pre-
dicts a 10-cycle between these two cycles, and this is
shown in Fig. 2(c) with @ =0.985. If we examine these
figures carefully, we can think of the approximate loca-
tion of the 10-cycle elements along the x axis as being
those of the 6-cycle superimposing on top of the 4-cycle.
Table V further illustrates this rule for the 10-cycle. This
rule can also be used between the 10-cycle and either the
6-cycle or the 4-cycle to give the approximate values of
the cycle elements of the 16-cycle and 14-cycle, and so
on. These are also illustrated in the same table for all the
terms generated by the summation rule from the two con-
secutive terms 6 and 4:

6— - —>22-516-10-14—-18— -+ >4 .

We have also found this rule to be applicable to any two
consecutive terms of any inverse cascade with any value
of x; when the summation rule holds. Thus we can con-
clude that the cycle elements of higher-level cascades
tend to crowd around the positions of the cycle elements
in the first-level inverse cascade along the x axis. Fur-
ther, we can predict exactly how many of the cycle ele-
ments of the higher-level cascades are close to each cycle
element of the first-level cascade, as the positions of the
new cycle elements are given approximately by the super-

TABLE V. Example illustrating the location of cycle elements in a higher-level cascade with respect
to those in the first-level cascade. Periods 6 and 4 are consecutive terms of the first-level cascade when

xd=0.1.

Number of cycle elements of orbit close to x;,

Period of orbit

The cycle elements of orbit with period 6

X X, X3 X4 Xs Xg

6 1 1 1 1 1 1
22 3 4 4 4 4 3
16 2 3 3 3 3 2
10 1 2 2 2 2 1
14 1 3 3 3 3 1
18 1 4 4 4 4 1
4 0 1 1 1 1 0
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imposition of those of the cycle elements of the two con-
secutive terms.

IV. ROUTES TO CHAOS

Based on the variation of the Lyapunov exponent as a
function of the parameter @ and the e-a phase diagram
for the map given by Eq. (1), where € determines the size
of the discontinuity along the y axis, de Sousa Vieira and
co-workers believe that chaos first occurs at the “accu-
mulation point of the accumulation points” [3—6]. How-
ever, by using our definition of the inverse cascade given
earlier [1], we find that the accumulation points do not
accumulate at the value of a=a, where chaos first
occurs. Our reasons are as follows. Though this map
only possesses six first-level inverse cascades, there exist a
possibly infinite number of higher-level inverse and direct
cascades, each with an accumulation point, whenever
rule I holds [1]. In view of the fact that within each
first-level inverse cascade, the range of each term in-
creases with a (see Fig. 1 of Ref. [1]), the separation be-
tween each set of accumulation points would tend to get
larger towards the beginning of each first-level inverse
cascade, i.e., with increasing a. Consequently, if these
sets of accumulation points were to accumulate, then
they can only do so at the accumulation point of each
first-level inverse cascade, which lies at its end and not at
the beginning. Thus they cannot accumulate at the point
where chaos first arises, which we have found to lie
beyond these first-level inverse cascades. There does exist
another type of “inverse cascade,” with one part lying in-
side the periodic region and the other part in the chaotic
region. However, it is most unlikely that any of each set
of possibly densely-packed, higher-level accumulation
points of this seventh “first-level inverse cascade” could
accumulate at a,.

For each of the maps F with x; = —0.01, 0.6, and 0.65,
we have seen from Sec. III that no new cycles can exist
between any two consecutive terms of the first-level in-
verse cascade, as rule II and conjecture II are satisfied.
Hence, in each case, higher-level cascades cannot exist,
implying that there is only one accumulation point at the
end of the first-level inverse cascade. Therefore, for these
three maps, chaos obviously cannot occur by the route
known as ‘“‘accumulation point of the accumulation
points.”

From Table I, we observe that at the end of the first-
level inverse cascades of both maps F with x,;,=0.2 and
0.3, there exists a series of period doublings until chaos is
reached. Thus the route to chaos for these two maps is
by period doubling, similar to that for the standard logis-
tic map. We note further that the parameters at which
period doublings occur, app, are the same for both these
maps and also for maps with values of x,; lying between
0.2 and 0.3. However, the values of app are different
from those of the logistic map. This is not a surprising
result, as in the discontinuous maps, the cycle elements
lie on both portions of the maps.

In the case of the map F with x;=0.1, the route to
chaos is quite different. By comparing the sequences
shown in Table I for x;=0.2 and 0.3 with that for
x;=0.1, we see that period doubling does not carry on
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infinitely when x; =0.1, but instead stops at period-8. As
a increases beyond this point, the periods of the stable cy-
cles alternate between 37 and 103 in a cyclic sequence

37—-103—-37—-103—>37—103— - - -

just before the onset of chaos. There exist many (possibly
infinite) occurrences of the terms 37 and 103, where the
length of parameter occupied by each term of the se-
quence does not seem to follow any regular pattern.
After the onset of chaos, we observe another cyclic se-
quence

21-80—-21—-80—21—-80— - -

(a)
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FIG. 3. x,=0.1: (a) Period 8 cycle at a=1.61523. (b)
Period 37 cycle at a=1.61524. At least one cycle element is
close to x, in both cases.
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Hence, the route to chaos for this map is quite different
from the period-doubling route. We shall tentatively la-
bel this route as the alternating route, the nature of
which is still under exploration.

Note that, for this particular map, the route to chaos is
not always by the alternating route, as it is basin-
dependent. For example, with x, equal to O, we get ex-
actly the same pattern of cycles up to the 8-cycle, i.e., the
inverse cascade followed by the period doubling of the 2-
cycle up to the 8-cycle, but beyond this the cyclic se-
quence is replaced by just the two terms 37 and 103, at
the end of which chaos occurs.

(a)

0.4

Xn+]

.0

0

.2

-0

-0.6 -0.4

(b)

xn+l
2
L

I T T T T T T T il

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

FIG. 4. x;=0.2: (a) Period 8 cycle at a =1.624 64, just be-
fore period doubling takes place. (b) Period 256 cycle at
a=1.63192, after several period doublings of the 8-cycle. None
of the cycle elements is close to x; in both cases, unlike the situ-
ations in Fig. 3.
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That the character of the bifurcation involved in this
alternating route to chaos is quite different from that in-
volved in the period-doubling route can be seen graphi-
cally as follows. Figure 3(a) shows a period 8 cycle at
a=1.61523 for the alternating route map, i.e., for the
map with x; =0.1 with one of the cycle elements lying
close to the discontinuity of the map. When the parame-
ter a is increased slightly to @ =1.615 24, as shown in Fig.
3(b), the period of the stable cycle is 37 instead, i.e., the
8-cycle has bifurcated into a 37-cycle. Thus this bifurca-
tion occurs when a cycle element is close to the discon-
tinuity. In the case of the period-doubling route, the situ-
ation is quite different. The map with x;=0.2 is shown
in Fig. 4(a), which illustrates a period 8 cycle at
a=1.624 64, shortly before it loses its stability and its
period doubles into a 16-cycle. In this case, none of the
cycle elements is close to the discontinuity, but instead
bifurcation occurs because the tangent of F" [where in
this notation, FX(x) means F(F(x))] is equal to —1 at
each of these n-cycle elements. This result remains valid
even after many period doublings, an illustration of
which is given in Fig. 4(b) for the map with x;=0.2,
where the stable cycle has a period 256=2% at
a=1.63192.

The mechanism of the route to chaos for the discon-
tinuous map with other values of x, is still mysterious.
In the case when x; = —0.1, chaos appears to arise in the
midst of an increasing sequence, as terms such as
60,76,92, . .. can be found in the chaotic region. Simi-
larly, when x; = —0.01, the same behavior is observed,
and in this case, we can find the terms 47 and 51 after the
onset of chaos. In the case when x,;=0.01, there is no
evidence of the presence of any such sequence when
chaos arises. For all the maps with values of x; given in
Table I, except those labeled with an asterisk (%), chaos
first occurs immediately after the last cycles shown.
However, for those labeled with the asterisk (%), beyond
the inverse cascades shown, there exist other terms that
appear to belong to higher-level inverse and direct cas-
cades before chaos first occurs.

V. MODIFIED SUMMATION RULE
AND PERIOD DOUBLINGS IN CHAOTIC REGION

For the map F given by Eq. (2) with x;,=—0.3, —0.2,
—0.01, —0.1, 0.01, 0.1, or 0.8, the modified summation
rule seems to hold in the chaotic region. For instance,

between the terms 168 and 68 when x; = —0.1, we find
the sequence
168— -+ —-572—5404—236—304—372— - -+ —68

interposed with chaos and other periodic windows. How-
ever, the following sequence P-—>4P-—3P—>2P—3P
—4P — P, which can be widely found in the chaotic re-
gion of the map given by Eq. (1) and which satisfies the
modified summation rule, cannot be found in the maps F
with these values of x;.

However, for the maps with x;=0.2, 0.3, 0.4, 0.5, 0.6,
0.65, or 0.7, the periodic cycles in the chaotic region do
not seem to obey the modified summation rule. Instead,
for these maps, we observe the following period-doubling
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sequences 2-—>4-—>8-—>16—32— --- either in the
periodic or in the chaotic regions. Further, the values of
the parameter a when period doubling occurs, app, are
the same for each of these maps. As observed in Sec. IV,
when x; =0.2 or 0.3, the above period-doubling sequence
leads to the onset of chaos. However, when x;=0.4, 0.5,
0.6, 0.65, or 0.7, this period-doubling sequence occurs in
the chaotic region, with the 2-cycle being the first period-
ic cycle after the onset of chaos.

That the bifurcation points for the period-doubling se-
quence 2—>4—->8-—>16—32— - - - are identical for each
of these maps with values of x; between 0.2 and 0.7 can
be understood graphically. Figure 5(a) illustrates a 32-

.8

0.4

xn+1

(b) —

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

FIG. 5. 32-cycle at a =1.6315: (a) x;=0.2, (b) x;,=0.7. The
two sets of cycle elements are identical for both maps.
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cycle at a=1.6315 when x,=0.2, while Fig. 5(b) shows
the same cycle at the same value of ¢ but with x,=0.7.
As the cycle elements of both these maps lie outside the
region x between 0.2 and 0.7 and these maps have the
same shape outside this region, it follows that both sets of
cycle elements are identical. Further, it follows that any
of these maps with x,; lying between 0.2 and 0.7 and
a=1.6315 will possess the same set of cycle elements.
Hence, if all the cycle elements of these maps remain out-
side this region as a varies, period doublings must occur
at the same values of app, for each of these maps.

We are unable to find such a period-doubling sequence
at values of x; where the modified summation rule seems
to hold in the periodic or chaotic region. Further, when
such a period-doubling sequence exists in the chaotic re-
gion, the modified summation rule does not apply.
Hence, it seems that the modified summation rule and
this particular period-doubling sequence are mutually ex-
clusive. However, it is possible for other types of period-
doubling sequences to coexist with the modified summa-
tion rule.

VI. BASINS OF ATTRACTION

In the logistic map, there exists only one basin of at-
traction, i.e., the eventual orbit is independent of the ini-
tial value x,. However, for the discontinuous logistic
map, we find that the number of basins may be either one
or two, depending on the value of a.

Let us first illustrate the situation for the bifurcation of
the 2-cycle into a 4-cycle for the map F with x;=—0.2.
When x, is equal to 0.5, which is the initial value we have
employed throughout our computations in the other sec-
tions of this paper, we observe a 2-cycle when a =1.2421,
slightly before the bifurcation of the 2-cycle into a 4-
cycle. However, when a different value of x is chosen
for the same parameter value, we may get either a 2-cycle
or a 4-cycle. This result is summarized in Fig. 6(a),
which shows the basins of attraction when @ =1.2421. In
this figure, for a given value of x, a dark vertical line in-
dicates a 2-cycle, while a white vertical line indicates a 4-

(a)
-1.0 0.0 7‘.0
v

(b)
i1
| I
oo '
FIG. 6. x,=—0.2: (a) Basins of attraction for the 2- and 4-

o
cycles at a=1.2421, where the shaded regions represent 2-
cycles and unshaded regions 4-cycles. (b) Complement of Fig.
6(a), where now the shaded regions represent 4-cycles and
unshaded regions 2-cycles.

1
1.0
Lo
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cycle. Figure 6(b) illustrates the complement of Fig. 6(a),
where now a 4-cycle is denoted by a dark vertical line,
while a 2-cycle is denoted by a white line. Thus, for some
values of x, bifurcation from the 2-cycle into the 4-cycle
can occur before a =1.2421.

Figure 7(a) further illustrates the two basins over a
finite interval of the parameter a. In this diagram, a dark
dot denotes a 2-cycle, while a white dot indicates a 4-
cycle. When a is small, the periods of the orbits are
mostly 2, so that the total area occupied by the white re-
gions in the diagram is tiny. These white regions grow
bigger with increasing a. This is intuitively correct, as we
expect more 4-cycles to be present at higher values of the
parameter.

Another characteristic that is not obvious in Fig. 7(a) is
the presence of continuous horizontal white lines over
certain ranges of x for large values of a. These can be
seen in Fig. 7(b), which is an enlargement of a small re-
gion in Fig. 7(a). Here, over a large region in the x,-a
plane, the cycles have periods 4, while over other regions,
the cycles have alternating periods of 2 and 4. Thus, if x
is chosen to lie in the “alternating” domain, say 0.13, we

1.2447

a
1.2446

1.2445

®)
R
]
R
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I
I
——
1
——
—
0.1

[}

T
0.09 0.11

T,

FIG. 7. x,=—0.2: (a) Basins of attraction for the 2- and 4-
cycles over an interval of a, where the shaded regions represent
2-cycles and unshaded regions 4-cycles. (b) Enlargement of a
small region in (a).
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1.54316

1.54313

1.54310

L,

FIG. 8. x,;=0: Basins of attraction for the 13- and 9-cycles
over an interval of a, where the shaded regions represent 13-
cycles and unshaded regions 9-cycles.

would

—2—>4— -

observe the cyclic sequence 2—4—2-—4
, which is illustrated in Fig. 7(b) by the al-
ternating occurrences of dark and white dots.

Behavior similar to the above is also found for maps
with other values of x,, for example for x; =0.1. Hence,
for this map, we can understand why for some values of
x9, say 0.5, the cyclic sequence 37—103—37
—103—37—103— - - - is obtained and why for other
values of x, say O, the length of the cycle jumps from 37
to 103 and remains at 103 until the onset of chaos.

Diagrams similar to Fig. 7 would still be obtained for
bifurcations within an inverse cascade for the map F with
other values of x,, including 0. For example, consider
the inverse cascade

- —525-521-517—13—-9

belonging to the map given by Eq. (1). In Fig. 8, we
display the basins of attraction for the 13- and 9-cycles.
A dark dot on the diagram denotes a 13-cycle, whereas a
white dot indicates a 9-cycle. The lower portion of Fig. 8
is totally black, whereas the upper portion is totally
white. This implies that for a value of a far away from
the bifurcation parameter, only one basin of attraction
exists. This property holds in general, including the
period 2 to period 4 bifurcations shown in Fig. 7.

VII. OTHER FEATURES

A. Cycle elements in relation to termination
of inverse cascades

Immediately following the end of the first-level inverse
cascades of both the maps with x; =0.01 and 0.1, we ob-
serve from Table I that there exist cycles with periods
identical to the first term of the first-level inverse cascade.
Yet we do not consider these cycles as being part of the
inverse cascades, even though superficially they seem to
belong to the first terms of these cascades. This con-
clusion is based on the observation that rule I does not
hold for these cycles but it holds within these two cas-
cades.
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Further, we have observed that for any cascade belong-
ing to any map F with any value of x;, regardless of
whether rule I or rule II is satisfied, the number of posi-
tive cycle elements remains unchanged throughout the
whole range of a occupied by any one term. However, in
the case of the maps with x;=0.01 and 0.1, the number
of positive cycle elements of the cycles occurring in the
range of the first terms of the inverse cascades is different
from that of the cycles just after the end of the cascades.
Hence, a signature for distinguishing the two consecutive
ranges of cycles with identical periods, where only one of
the ranges belongs to the first term of the cascade and the
other lies outside the cascade, is that in going from one
range to the other, the number of positive cycle elements
of these cycles changes. For example, for the period 6 cy-
cles when x,; =0.01, those that constitute the first term of
the inverse cascade have six positive cycle elements. The
other 6-cycles immediately after the end of the cascade
have one negative and five positive cycle elements in-
stead.

B. Signature for identifying inverse cascades

For the map given by Eq. (1), we find that bifurcations
within a cascade occur whenever one of the cycle ele-
ments approaches the discontinuity of the map, which is
x,=0[1]. We find that this property is still preserved for
all the inverse cascades of the map F, thus making this a
universal property.

We can use this property to confirm whether any
unusual term should belong to an inverse cascade. If it
does, then at the bifurcation point, one of the cycle ele-
ments should be extremely close to x,;. For example,
from Table I, we can see that some terms neither belong
to the inverse cascades, nor do they form part of the
period-doubling sequences. For instance, for the map
with x, = —0.01, the consecutive terms 8, 6, and 4 do not
form an inverse cascade, as during bifurcations from the
8-cycle to the 6-cycle, or from the 6-cycle to the 4-cycle,
none of the cycle elements is close to x;, = —0.01. This
classification is supported by the fact that if these terms
were to be part of an inverse cascade, then we should be
able to find the terms 10,12,14, ... and in fact, we can-
not find them. Similarly, we can conclude that the con-
secutive terms 6 and 4 belonging to the map with
x;=—0.1 do not form an inverse cascade.

C. Imaginary cycles

If we ascribe to either the summation rule or its
modified version in the chaotic region, then we should ex-
pect to find a certain term somewhere within the se-
quence belonging to the map F given by Eq. (2). Howev-
er, for some values of x,, it is impossible to find it compu-
tationally. We shall refer to these cycles as imaginary cy-
cles.

Let us illustrate with some numerical examples. For
the map F with x; = —0.1, we observe an increasing se-
quence

28 —>44—560—76—>92—108— - - -
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followed by a decreasing sequence
- —>100—84—68—52—-36—20,

each with a common difference of 16. We do not refer to
these sequences as direct and inverse cascades, since all
the terms, except 28 and 44, lie in the chaotic region and
thus are interposed with chaos. We expect the 16-cycles
to occur after the end of the increasing sequence, so that
we can think of the terms of the two sequences as being
generated by the modified summation rule. However, we
have been unable to find the 16-cycles and accordingly
they are regarded as imaginary cycles.

Another example is provided by the map with x; =0.4.
After the 12-cycles shown in Table I, which lie in the
periodic region, we observe higher-level inverse and
direct cascades that seem to be generated by the summa-
tion rule between the terms 12 and 10. However, as this
10-cycle could not be found, we again refer to it as an
imaginary cycle.

Though these imaginary cycles do not exist, as we can-
not find them computationally, it is still convenient to
think that they do exist, as we can use the summation
rule or its modified version to predict the periods of real
cycles.

VIII. DISCUSSION AND CONCLUSIONS

We have seen above that the discontinuous maps F
given by Eq. (2), with all values of x,; including O but ex-
cluding —O0.1, possess at least a first-level inverse cascade.
Further, we have also found first-level inverse cascades in
many other discontinuous maps, an example of which is
given by the following equation

1—€,—a,lx, |t if x,>xy,

(3)

Xn+1— z, .
l—e,—ay|x,|? ifx,<x,;,

with different combinations of a;, a,, z,, and z,, with
€,7%¢€,. The amplitudes @, and a,, and likewise the ex-
ponents z; and z,, need not be equal. Thus we can con-
clude that the main requirement for the existence of
first-level inverse cascades is the presence of a sectional
discontinuity in the map, which can be located at many
possible places and not necessarily at its extremum.

While for all values of x; except —O0.1, the map F de-
scribed by Eq. (2) possesses at least a first-level inverse
cascade, the number of inverse cascades is not a universal
property, since for some values of x,, there are six, and
for others, only one.

We have also found that each of the first-level inverse
cascades belonging to the map F with any value of x, in-
cluding 0, has a common difference equal to the period
immediately below its accumulation point. Thus this rule
appears to apply universally for general discontinuous
maps with inverse cascades.

Bifurcations within an inverse cascade occur whenever
one of the cycle elements approaches the discontinuity of
the map F for all values of x,; including 0. Thus this is a
universal property.
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For the map with x; =0 given by Eq. (1), either rule I
and the summation rule or rule II hold [1]. We have also
found that for the map F given by Eq. (2) with any value
of x4, either rule I holds, in which case new cycles should
exist between any two consecutive terms of the first-level
inverse cascade and the periods of these new cycles can
be determined from the summation rule, or rule II holds,
implying that no new cycle can exist between any two
consecutive terms of a first-level inverse cascade. Hence,
these three rules are universal for these discontinuous
maps, and we suspect that they must also hold for other
types of discontinuous maps.

When the summation rule holds, there exists a rule for
approximating the values of the cycle elements belonging
to the new cycles lying between two first-level consecutive
terms. This is given by the superimposition rule: the po-
sitions of the new cycle elements are given approximately
by the superimposition of those of the cycle elements of
the two consecutive terms.

The modified summation rule, for use in the chaotic re-
gion, does not have as widespread applications as the
summation rule in the periodic regions. There are some
values of x; where the modified summation rule holds
and some others where it does not, implying that this rule
is not universal.

For the maps F given by Eq. (2) with values of x,
where the modified summation rule does not hold in the
chaotic regions, we observe the following period-doubling
sequences 2—>4-—>8-—>16-—32— -+ either in the
periodic or in the chaotic regions. Further, for each of
these maps, period doublings occur at the same values of
app.

We find that the modified summation rule and the
above-mentioned period-doubling sequence are mutually
exclusive in the sense that if this particular period-
doubling sequence exists, then the modified summation
rule does not hold, and if the modified summation rule
holds in the chaotic region, then this particular period-
doubling sequence cannot exist though other types of
period-doubling sequences may exist.

We find that there exists one, but sometimes two,
basins of attraction for the map at different values of x,.
Further, when the value of a is near any bifurcation pa-
rameter, there exist two basins, and for other values of a,
there is only one.

Based on our definition of the inverse cascade, we do
not agree with Sousa Vieira and co-workers that chaos
first occurs at the “accumulation point of the accumula-
tion points” for the map given by Eq. (1) [3-6]. Further,
for the map F with x;, = —0.01, 0.6, and 0.65, chaos obvi-
ously cannot occur by this route, as for each of these
maps there exists only one accumulation point.

For the map F with x,; lying between 0.2 and 0.3, the
route to chaos is definitely by period doublings, with the
values of app different from those of the logistic map.

Further, for the map F with x; =0.1, we find that the
route to chaos is by the “alternating” route when x is
chosen to be 0.5. The character of the bifurcation in-
volved in this alternating route is quite different from
that of the period-doubling route.

For the same value of x;=0.1, the route to chaos is
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different for this map F when x is chosen to be O instead.
The route is then clearly basin-dependent. For this and
the maps with values of x,; equal to —0.3, —0.2, —0.1,
—0.01, 0.01, 0.4, 0.5, 0.6, 0.65, 0.7, or 0.8, and x,=0.5,
chaos occurs either immediately after the end of the cy-
cles given in Table I or just after some terms that appear
to belong to higher-level inverse and direct cascades. The
nature of this route to chaos for these maps is still un-
known.

It is clear that a universal route to chaos for the maps
F given by Eq. (2) with different values of x; does not ex-
ist, since the route can be by period doubling, or by an al-
ternating sequence, or by a process that is still unknown.
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APPENDIX

The following rules and conjectures are taken from
Ref. [1].

1. Rule I: Existence of cycles
between any two consecutive A}k ’s

There will exist new cycles between any two consecu-
tive A}k ’s of a first-level inverse cascade if there is an in-
teger n denoted by n, such that, for n 2 n,, the converg-
ing iterates to any cycle element in either one of these
two ranges assume either the form

Xy >Xy4p>Xp42p """ ZXpt(m—1)P

>Xp4mPZ Xn+(m+1)P """ >

or the form

Xp <Xptp<Xpt2p" " " <Xpt(m—-1P

<Xp4+mp <Xp+(m+DP """ >

where the general index n +mP is an integer, x, the nth
iterate, and P the period of cycles in either one of the two
consecutive ranges.

2. Conjecture I

If there exist new cycles between any two consecutive
terms of a first-level inverse cascade, then new cycles will
also exist between any other two consecutive terms of the
same cascade.

3. Rule II: Nonexistence of cycles
between any two consecutive A}k ’s

No new cycles will exist between any two consecutive
A}k’s of a first-level inverse cascade if there is an integer
n, such that, for n =n,, the converging iterates to any
cycle element in either one of these two ranges assume ei-
ther the form

Xp>Xpt4py Xptp<Xpi42py Xp42P > Xp43ps--->

Xp +2mP > Xn +(2m +1)P>

Xn@m+D+P <Xn+@2m+1P> - -+

>
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with
Xp>Xp42p>Xp4ap """ > Xp4(2m—2)P

>Xp+2mP > Xn+2m+2)p "
and

Xp4p<Xpi3p<Xpiysp " <Xpt@m—-1DP<Xn+2m+1)P

<Xp+@m+3)p "%

or the form
Xp <Xptps Xp+p>Xp42ps Xp42p <Xpi3ps---s

Xp42mP <Xp+Q2m+1)P> Xn+Q2m+1P > Xn+2m+2)Ps -« + >

with
Xp <Xp42p <Xptap """ <Xpt(2m-—2)P

<Xp4omP <Xp+@m+2)p "

and

Xy 4p> Xy 43p>Xp45p " "> X4 2m—1)P > Xy +(2m +1)P

>Xp+(2m+3)P ",

where the general index n +mP is an integer, x,, the nth
iterate, and P the period of cycles in either one of the two
consecutive ranges.
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